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• Much of AI so far focuses on imitation 
• I.e. gradient descent on labeled datasets 
• Powerful in prediction: object recognition, diagnosis, forecasting, etc. 

• Agentic AI focuses on behavior 
• Gradients not available 
• Needs to be discovered 

• How can we create novel behaviors?

Motivation: From Imitation to Creativity



• Approximating gradient descent
• Explore around the current solution
• Improve it gradually
• Can climb the nearest hill well

Reinforcement Learning is One Approach



…but Creativity in RL is Limited

• Space is too large
• Multiple starts won’t help

• Space is too high-dimensional
• Little improvement from one step

• Space is deceptive
• Can only find the nearest hill



Solution: Population-based Search

A.k.a Evolutionary Computation 
• Many individuals spread out, sharing information 
• Not limited to differentiable domains: configurations, choices ok 

Not limited to incremental improvement 
• Large jumps possible, can be more creative 



• Structured search works in large spaces (e.g. 2^2^70; Hodjat & Shahrzad 2016)
• Multiple variables optimized at once (e.g. up to 1B; Deb et al. 2017)
• Multiple objectives and novelty get around deception (Shahrzad and Hodjat 2020)

Neuroevolution uses population-based search to optimize neural netwoks
• Weights, topologies, designs

Scaling up through Evolution

Works in large scales



Evolution Basics: Encoding, Evaluation, and Selection

• A population of encodings
• Decoded into individuals that are evaluated in the domain
• Good individuals retained, bad thrown away



Creating Variation

• New individuals generated from the parent encodings
• Crossover: combine building blocks from two parents

• Mutation: create new building blocks

Parent 1

Offspring 2

Offspring 1

Crossover

Parent 2



Basic Neuroevolution
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Example: Learning to Walk



• Salimans et al. ”Evolution Strategies as a Scalable Alternative to Reinforcement 
Learning”, 2017. 

• Such et al. ”Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative 
for Training Deep Neural Networks for Reinforcement Learning”, 2018.

NE vs RL



Advanced Neuroevolution

● Historical markings match up different structures
● Speciation

○ Keeps incompatible networks apart
○ Protects innovation

● Incremental growth from minimal structure, i.e. complexification
○ Avoids searching in unnecessarily high-d space
○ Makes finding high-d solutions possible

(Stanley and Miikkulainen, 2002)

E.g. Neuroevolution of Augmenting Topologies (NEAT)





Discovering Compact, Interpretable Structure
● E.g. in double pole balancing 

○ Easy when position, velocity of  both poles and the cart are given
○ Hard when only positions: need to figure out how they are moving

● Discovers recurrent structure
○ Either representing velocities separately
○ Or simply the derivative of the difference of the poles!

● Big improvement from other approaches
○ Standard value-function RL unsuccessful



Indirect Encodings



Indirect Encoding: Development

 

Gruau & Whitley 1993)



 Compositional Pattern Producing Networks 
(CPPNs; Stanley 2007)



 CPPN-Generated Patterns
www.picbreeder.org



From 2D Images to 3D Virtual Creatures

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative en- coding. ACM SIGEVOlution, 7(1):11–23, 2014. 



Encoding Brains Through CPPNs:
HyperNEAT 

(Stanley et al. 2009)



HyperNEAT-encoded Quadruped Locomotion

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect encoding across the continuum of regularity. IEEE Transactions on Evolutionary Computation, 15(3):346–367, 
2011 



Why are Indirect Encodings a Good Idea?



Taking advantage of diversity



Diversity: (A) Searching for Novelty

(Secretan et al. 2011; Clune et all 2011)



Novelty Search (Lehman & Stanley 2011)

 



Novelty Search 

 





Novelty Search Demo

 

 

(Lehman and Stanley 2010)



(B) Combining Quality with Diversity

Goal: Find a set of different high-quality solutions for a given problem 
Ex: Find fast walking gaits for a legged robot for every direction 

Popular QD Method: Multi-dimensional Archive of Phenotypic Elites1 
(MAP-Elites)

Idea: Evolve an archive of different high-quality solutions (= elites)

(Mouret and Clune 2015)
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Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm
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1. Divide the behavior space into 
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Main loop
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Evolving intelligent agents



4.2 Evolving Behavioral Strategies

Strategy: different behaviors at different times

Ms. Pac-Man:

(Schrum and Miikkulainen 2015)



               







Evolving Collective Systems



4.2.2.2Evolving Collective Behavior

               



DEMO

(Rawal et al. 2010)



Evolutionary Arms Race

50-75: Single predator catches the prey 75-100: Prey evades by circling

Predators and prey populations develop increasingly sophisticated behaviors
• Each improvement provides a challenge to the other population



Evolutionary Arms Race

100-150: Two predators cooperate 150-180: Prey baits and escapes



Evolutionary Arms Race

180-200: All predators cooperate



Evolutionary Arms Race

200-250: Predators herd two prey 250-300: Prey evade by scattering



Evolving Neural Cellular Automata 

• Neural Cellular Automata (Chua et al. 1988)
• Differentiable NCA (Mordvintsev et al. 2020)



Regenerating Soft Robots through Neural Cellular Automata 
Horibe, Walker, Risi; EuroGP 2021



Growing NNs with neural developmental programs 
Najarro, Sudhakaran and Risi, ALIFE 2023



66

Self-Assembling ANNs through Neural Developmental Programs

Step 0: We start with an initial graph seed

𝑆𝑡𝑎𝑡𝑒𝑐𝑒𝑙𝑙𝑖: [7,4, 2,3, . . ]

𝑆𝑡𝑎𝑡𝑒𝑐𝑒𝑙𝑙𝑖: [5,4, 9,3, . . ]

𝑆𝑡𝑎𝑡𝑒𝑐𝑒𝑙𝑙𝑖: [2,1, 2,3, . . ]



67

Self-Assembling ANNs through Neural Developmental Programs

Step 1: Update node states via message passing



68

Self-Assembling ANNs through Neural Developmental Programs

Step 2: A neural network decides which nodes will grow



69

Self-Assembling ANNs through Neural Developmental Programs

Step 3: If network weighted: another NN determines edge weights



70

Self-Assembling ANNs through Neural Developmental Programs

Seeding
Information
aggregation Growth Synaptic strength 

prediction





Open-ended Neuroevolution



Competitive Coevolution of Environments 
and Solutions
• Paired Open-Ended Trailblazer (POET; Wang et al.)







Synergies with ML



5.1 Neuroevolution Synergies with Deep Learning

(A) Fundamental: Neural Architecture Search
• Optimizing structure and hyperparameters
• Takes advantage of exploration in EC  

(B) Extended: Data and training
• Loss functions, activation functions, data augmentation, initialization, learning algorithm
• Takes advantage of flexibility of EC



(A) Evolutionary Neural Architecture Search  

Evolution is a natural fit: 
• Population-based search covers the space 
• Crossover between structures discovers principles 
Moreover, 
• Can build on Neuroevolution work since the 1990s:
       partial solutions, complexification, indirect encoding, novelty search
• Applies to continuous values; discrete choices; graph structures; combinations
• Can evolve hyperparameters; nodes; modules; topologies; multiple tasks



E.G. NAS with CoDeepNEAT 

Evolution at three levels 
• Module subpopulations optimize building blocks 
• Blueprint population optimizes their combinations 
• Hyperparameter evolution optimizes their instantiation 

Fitness of the complete network drives evolution 
• Candidates need to be evaluated through training
• Expensive; use partial training, surrogates…

59

(Liang et al. 2016)



Making NAS Evaluations Practical  

Population-based training (Jaderberg et al 2017; Liang et al. 2021) 

• Continual training and evolution 
Scaling and regularization (Such et al. 2017; Real et al. 2019)

• State-of-the art at the time in CIFAR-10, CIFAR-100, ImageNet
Specialized crossover operators (Qiu and Miikkulainen 2023)

(Liang et al. 2021) (Real et al. 2019)



(B) Optimizing Other Aspects of Deep Learning Design  

Optimizing activation functions and loss functions (Bingham and Miikkulainen, 2022, IJCNN-25)

• Regularization and refinement
Designing machine learning algorithms with GP 
• Adapts to different task types 
• Discovering new layer types 

Coevolution of multiple aspects of network design

(Bingham and Miikkulainen, 2022) (Gonzalez and Miikkulainen, 2020)
(Real et al. 2020)

(Gonzalez and Miikkulainen, 2020)

(Real et al. 2020)



Neuroevolution Synergies with RL  

• A population of networks evolved to maximize rewards
• Evaluations create off-policy training data for Deep RL
• Trained networks periodically injected into the population
• ERL outperforms both EA and Deep RL alone

(Khadka and Tumer 2018)Evolutionary Reinforcement Learning:

(A) Combining population-based search and RL-based search



(B) Evolving Starting Points for RL

• Model-agnostic Meta-Learning (MAML) finds good starting points for learning
• Evolutionary methods like MAML-Baldwin and ES-MAML improve by evolving the starting points
      Evolve initial weights that adapt to different tasks during the agent’s lifetime.
• E.g. in half-cheetah task, adapts to changing direction rewards within seconds

MAML-Baldwin, ES-MAML

(Finn et al. 2017)

(Fernando et al. 2018; Song et al. 2019)



Meta-Learning through Hebbian Plasticity in Random 
Networks

Start network with random weights instead and only evolve local 
Hebbian learning rules ➔ can weights learn to self-organize?

© Mahapattanakul

Najarro & Risi, NeurIPS 2020



• Video quadruped





Lung et al. 2025; IROS



Neuroevolution Synergies with LLMs

Better evolution through LLMs?
• Evolution through large models (ELM)
• Language model crossover (LMX)
• Level generation for Mario (MarioGPT)

E.g. Evolutionary prompting for NAS (EvoPrompting)
• Existing architectures as prompts; generate new
• Tune the prompts based on performance  

(A) Neuroevolution through Large Language Models

(Meyerson et al. 2024)

(Chen et al. 2023)



Neuroevolution of Large Language Models

Better LLMs through evolution?

Model merging: combine multiple fine-tuned LLMs to one
• E.g. Japanese LLM with Math
Evolving prompts: Promptbreeder
• Evolving mutation prompts to improve task prompts
Evolving multi-LLM interactions
• E.g. roles for collaborative problem solving

(Akiba et al. 2024)

(Fernando et al. 2023)

(Hong et al. 2023)



Insights into biology



Evolution of modularity

Clune, J., Mouret, J. B., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society b: Biological sciences, 280(1755), 20122863.



Example: Evolution of Intelligent Coordinated 
Behavior

Stealing a kill from lions
• Succeeds in an otherwise impossible task 

(sometimes)
• More sophisticated than other hyena 

behaviors
• Highly rewarding compared to normal 

hunting
• Largely genetically determined
• A breakthrough in evolution of intelligence?
A collaboration with Kay Holekamp’s lab (MSU)
• Studying hyenas in Masai Mara since 1982

(Rajagopalan et al. 2021)



Simulation Setup

Lion at a kill, with an interaction circle around it
Ten hyenas chosen and placed randomly in the field
If four or more hyenas enter the circle simultaneously, they get the kill
• Otherwise they die
Does mobbing behavior evolve?
• What are the stepping stones for it?



Initial Behaviors

Risk evasion is common
• Never reach the circle; 

Medium fitness
Risk taking is common
• Charge the circle; 

Frequent low fitness
• Occasional high fitness 

by accident

Mobbing emerges
• Not just coincidence of risk 

takers
• Hyenas wait until there’s 

enough of them
Risk-evaders evolve into 
latecomers
Simple risk-taking and risk-
evasion still exist

Later Behaviors

Risk taking grows
• As long as it is successful often 

enough
Risk evasion also persists
Evasion at the circle starts to 
emerge
Is mostly detrimental, but an 
important stepping stone

Early Behaviors



These Behaviors Persist in Prolonged Evolution

Risk taking and risk evasion never go away completely
• They serve a role in maintaining the mobbing behavior
• If mobbing starts to get lost, it can be reintroduced



Insight into Real-life Behaviors

These behaviors are observed in real-life hyenas as well

A computational explanation of why they are there:
• Stepping stones in discovery
• Safeguards in maintaining



Future Challenge: Evolution of Language

Signaling is possible to evolve in ecological simulations
Structured language is much harder
Perhaps language evolved not from signaling, but cognition
• Complex social structure, with modifiable roles
• Language structure can reuse the same conceptual structures
Enough compute, complex simulations to study now?



AI is progressing from imitation to creativity; from models to agents 

Neuroevolution is a powerful approach to discovering behavior 
• Control, strategy, collective behavior, decision-making 
Neuroevolution can provide a boost to ML 
• Deep learning designs; RL exploration; LLM optimization 
•  Automatic design of learning machines 
Neuroevolution can provide insight into biological evolution  
• Evolutionary origins of circuits, behavior, intelligence 
• Evolution of language as a current challenge 
• A possible path to more capable artificial agents

Conclusion



The Neuroevolution Book!

• MIT Press, 2026
• A comprehensive overview
• Software platform: Demos, exercises
• Open access 

• https://neuroevolutionbook.com


