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 |.e. gradient descent on labeled datasets
« Powerful in prediction: object recognition, diagnosis, forecasting, etc.

« Agentic Al focuses on behavior
e Gradients not available
 Needs to be discovered

« How can we create novel behaviors?



Reinforcement Learning is One Approach
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Approximating gradient descent
Explore around the current solution
Improve it gradually
Can climb the nearest hill well



.but Creativity in RL is Limited

1800
1600 * Space is too large
o  Multiple starts won’t help
1000 * Space is too high-dimensional
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Solution: Population-based Search

A.k.a Evolutionary Computation

* Many individuals spread out, sharing information

* Not limited to differentiable domains: configurations, choices ok
Not limited to incremental improvement
« Large jumps possible, can be more creative



Scaling up through Evolution

Works in large scales
* Structured search works in large spaces (e.g. 2A270; Hodjat & Shahrzad 2016)

* Multiple variables optimized at once (e.g. up to 1B; Deb et al. 2017)
* Multiple objectives and novelty get around deception (Shahrzad and Hodjat 2020)

Neuroevolution uses population-based search to optimize neural netwoks
* Weights, topologies, designs



Evolution Basics: Encoding, Evaluation, and Selection

Termination
condition

Fitness Function Yes

Initial Population — Solution

Evaluation
7\ reached?
New :
Population Selection
Variation
Operator

* A population of encodings
* Decoded into individuals that are evaluated in the domain
» Good individuals retained, bad thrown away



Creating Variation

Termination
condition

Fitness Function Yes

Initial Population — Solution

Evaluation
e reached?
New .
Population Selection
Variation
Operator

Parent 1

Parent 2

Crossover

Offspring 1

Offsoring 2

* New individuals generated from the parent encodings

* Crossover: combine building blocks from two parents

» Mutation: create new building blocks




Basic Neuroevolution
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N;urol Network

» Evolving connection weights in a population of networks

» Chromosomes are strings of connection weights (bits or real)

» E.g. 10010110101100101111001
» Usually fully connected, fixed, initially random topology

> A natural mapping between genotype and phenotype
» GA and NN are a good match!



Population-based Search
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Population-based Search
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Population-based Search
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Population-based Search
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Example: Learning to Walk

P




NE vs RL

» Salimans et al. "Evolution Strategies as a Scalable Alternative to Reinforcement
Learning”, 2017.

» Such et al. "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
for Training Deep Neural Networks for Reinforcement Learning”, 2018.

DQN ES A3C RS GA GA
Frames 200M 1B 1B 1B 1B 6B
Time ~7-10d ~ 1h ~4d ~1lhor4dh ~ lhor4h ~ 6hor24h
Forward Passes 450M 250M 250M 250M 250M 1.5B
Backward Passes 400M 0 250M 0 0 0
Operations 1.25B U 250M U IBU 250M U 250M U 1.5BU
amidar 978 112 264 143 263 377
assault 4,280 1,674 5,475 649 714 814
asterix 4,359 1,440 22,140 1,197 1,850 2,255
asteroids 1,365 1,562 4,475 1,307 1,661 2,700
atlantis 279,987 1,267,410 911,091 26,371 76,273 129,167
enduro 729 95 -82 36 60 80
frostbite 797 370 191 1,164 4,536 6,220
gravitar 473 805 304 431 476 764
kangaroo 7,259 11,200 94 1,099 3,790 11,254
seaquest 5,861 1,390 2,355 503 798 850
skiing 13,062 -15443  -10911 7679 16,502 15,541 -
venture 163 760 23 488 969 11,422 —Y -

zaxxon 5,363 6,380 24,622 2,538 6,180 7,864




Advanced Neuroevolution

E.g. Neuroevolution of Augmenting Topologies (NEAT)
e Historical markings match up different structures

e Speciation

o Keeps incompatible networks apart

o Protects innovation

e Incremental growth from minimal structure, i.e. complexification

o Avoids searching in unnecessarily high-d space
o Makes finding high-d solutions possible

113 |4 5 6 113 |4 5 6 | 7
1—>4 P—>4|2—>5|3—>54—>5 1—>4 |2—>4|2—>5[3—>5|4—>5|3—>4
DIS IDIS
Mutate Add Connection
LN P
1 20 3 1 2

11423424535 46 1142344 > 46 386695
—>4 D—>4p—>53—>54—>5| [1—4 p—4[—>5]3—>5|4—>5/|3—>6|6—>
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Mutate Add Node
4 —> 4
1 2 3 1

(Stanley and Miikkulainen, 2002)

Generations

Species
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Why Is It a Good Idea?

Minimal Starting Networks

AMAAAAA

Generatlons pass...

Populatlon of Diverse Topologies

RAAAANA

» NN search space is complex with nonlinear interactions
» Complexification keeps the search tractable
» Start simple, add more sophistication

» Incremental discovery of complex solutions




Discovering Compact, Interpretable Structure

e E.g. in double pole balancing
o Easy when position, velocity of both poles and the cart are given
o Hard when only positions: need to figure out how they are moving

e Discovers recurrent structure
o  Either representing velocities separately
o  Or simply the derivative of the difference of the poles!

e Big improvement from other approaches
o  Standard value-function RL unsuccessful

Out

Method Evaluations

Gruau et al. 1996 .
¢ C O Cellular Encoding 840,000

Cart Long Pole Short Pole Bias Gomez and Miikkulainen 1999

Out ESP

NEAT

20 trials

Pos Velocity Z Velocity £ Velocity Bias Pos Z Z

Cart Long Pole  Short Pole Cart Long Pole  Short Pole Bias



Indirect Encodings



Indirect Encoding: Development
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» Instructions for constructing the network evolved
> Instead of specifying each unit and connection

» E.g. Cellular Encoding (CE cruau & whitiey 1993)

» Grammar tree describes construction

> Sequential and parallel cell division
> Changing thresholds, weights
> A “developmental” process that results in a network



Compositional Pattern Producing Networks
(CPPNs; Stanley 2007)
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CPPN-Generated Patterns

www.picbreeder.org
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From 2D Images to 3D Virtual Creatures

(b) Direct
(a) Indirect encoding encoding

N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative en- coding. ACM SIGEVOlution, 7(1):11-23, -



Encoding Brains Through CPPNSs:

HyperNEAT
(Stanley et al. 2009)

-
CPPN is queried once ANN
for every connection
when the ANN is created Y 1 Outout
1.0 P
Connection Weight 0.0
' /
/ CPPN \ mpu
x1 yl x2 y2 L -
}0’ 0.0 1.0 X
-

Neuron COW




HyperNEAT-encoded Quadruped Locomotion

=<F N

(a)

(d)

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the performance of indirect encoding across the continuum of regularity. IEEE Transactions on Evolutionary Computation, 15(3):346-_
2011



Why are Indirect Encodings a Good Idea?

» Describes structure efficiently

» Recurrency symbol in CE: XOR — parity
> Repetition with variation in CPPNs

» Useful for evolving topology

> E.g. large structured networks
> E.g. repetition of motifs




Taking advantage of diversity



Diversity: (A) Searchmg for Novelty
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» Motivated by humans as fitness functions

> E.g. picbreeder.com, endlessforms.com  (Secretan et al. 2011; Clune et all 2011)
» CPPNs evolved; Human users select parents
» No specific goal

> Interesting solutions preferred
» Similar to biological evolution?



Novelty Search (Lehman & Stanley 2011)

9o Bl

Gen 12 Gen 20 Gen 36 Gen49 Gen 74

(a) Intermediate images in the evolution of the skull image

= |9/0/0.°

Run 1 Run 3 Run 7 Run 15 Run 17
(b) Attempts to evolve the skull image directly

» Evolutionary algorithms maximize a performance objective
» But sometimes hard to achieve it step-by-step

» Novelty search rewards candidates that are simply different
> Stepping stones for constructing complexity



Novelty Search

(a) Medium Map (b) Hard Map



(c) Medium Map Fitness (d) Hard Map Fitness



Novelty Search Demo

Fitness Best

(Lehman and Stanley 2010)
» Fitness-based evolution is rigid

> Requires gradual progress

Novelty Best

> Novelty-based evolution is more innovative, natural

> Allows building on stepping stones

» How to guide novelty search towards useful solutions?

> Quality Diversity methods
» DEMO




(B) Combining Quality with Diversity

Behavior 2
Fithess

Behavior 1
(Mouret and Clune 2015)

Goal: Find a set of different high-quality solutions for a given problem
Ex: Find fast walking gaits for a legged robot for every direction

Popular QD Method: Multi-dimensional Archive of Phenotypic Elites?
(MAP-Elites)

Idea: Evolve an archive of different high-quality solutions (= elites)



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

Initialization
1. Divide the behavior space into
cells (= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fithess

Behavior 1 the solution becomes an elite

Behavior 2

=



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

1 Initialization
1. Divide the behavior space into cells
] || (= the Archive)

o T = 2. Initialize with random solutions
9 :. ] ? until n. .. elites are found
g H = Main loop
- N 1. Pick two elites from the Archive

2. Apply crossover and mutation

| ] L 0 3. Evaluate new solution
4. If new behavior or better fitness

Behavior 1 the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
1. Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fithess

the solution becomes an elite
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Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 1

Fithess

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fithess

the solution becomes an elite

R\



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

’ MAP-Elites algorithm
1 Initialization
1. Divide the behavior space into cells
] ’ (= the Archive)

o T = 2. Initialize with random solutions until
9 :. ? n. . elites are found
£ | = Main loop
@ 1. Pick two elites from the Archive

2. Apply crossover and mutation

i ] || 0 3. Evaluate new solution
4. If new behavior or better fitness
Behavior 1

the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 2

Behavior 1

Fithess

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fithess

the solution becomes an elite
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Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
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Behavior 1

Fithess

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
1. Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution
If new behavior or better fithess

the solution becomes an elite

o



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

ﬁ >l MAP-Elites algorithm
1 Initialization
N \\ 1. Divide the behavior space into cells
(= the Archive)

a t 2. Initialize with random solutions until
2 T ? n... elites are found
< ] = Main loo
S i p
M .. 1. Pick two elites from the Archive

2. Apply crossover and mutation

. n . 3. Evaluate new solution
4.

_ If new behavior or better fitnhess
Behavior 1 the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

ﬁ >l MAP-Elites algorithm
1 Initialization
N \\ 1. Divide the behavior space into cells
(= the Archive)

a t 2. Initialize with random solutions until
2 T ? n... elites are found
< ] = Main loo
S i p
M .. 1. Pick two elites from the Archive

2. Apply crossover and mutation

. n . 3. Evaluate new solution
4.

_ If new behavior or better fitnhess
Behavior 1 the solution becomes an elite



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

1 Initialization
1. Divide the behavior space into cells
|| (= the Archive)
2. Initialize with random solutions until
] n,,; elites are found
Main loop
.I 1. Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution

L _ If new behavior or better fitness
Behavior 1 the solution becomes an elite

Behavior 2
Fithess

hoOD



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

Initialization

1. Divide the behavior space into cells

(= the Archive)

2. Initialize with random solutions until

] n,,; elites are found
Main loop
1. Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution

it
. If new behavior or better fithess

Behavior 1 the solution becomes an elite

Behavior 2
Fithess

hoOD



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
1. Pick two elites from the Archive
. Apply crossover and mutation
. Evaluate new solution
. If new behavior or better fithess

Behavior 1 the solution becomes an elite

Behavior 2

.
Fithess
B WN



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
1. Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution

If new behavior or better fithess

Behavior 2
Fithess

Behavior 1 the solution becomes an elite

hoOD



Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

MAP-Elites algorithm

Initialization
1. Divide the behavior space into cells
(= the Archive)
2. Initialize with random solutions until
n,,; elites are found
Main loop
Pick two elites from the Archive
Apply crossover and mutation
Evaluate new solution

If new behavior or better fithess

Behavior 2
Fithess

I

Behavior 1 the solution becomes an elite

=



Evolving intelligent agents



4.2 Evolving Behavioral Strategies

Strategy: different behaviors at different times

Ms. Pac-Man:
» Agents perform many different tasks

» E.g. eat pills, avoid ghosts, eat
powerpills, eat ghosts

» Sometimes clearly separate in time

» Sometimes multiple tasks at once

» How can we evolve them into a single
network?

(Schrum and Miikkulainen 2015)



MM-NEAT: Modular Multiobjective Approach

(a) Single-module Network (b) Multitask Network (c) Preference Neuron Network

» Evolution discovers modules and when to use them
» Vs. human-designed division with multitasking
» Multiple modules with preference neurons

» Modules implement different behaviors
» Preference neurons used to choose among them
» Module-mutation adds new modules

» Evolved towards multiple objectives

» Correspond to dimensions of game play
» E.g. pills and ghosts in Ms. Pac-Man



Human-Designed Task Division

» Multitask approach

» One module for threat ghosts

» Another module for edible ghosts
» Works ok, but...

» DEMO




Evolution-Discovered Task Division

» One module used 95% of the time

» Eat pills, avoid ghosts, chase ghosts
» Different behaviors with a common base

» A second module 5% of the time

» Luring ghosts near a power pill
» Escaping from tight spaces

» A different multimodal perspective
» Not as obvious, but more powerful
» DEMO




Evolving Collective Systems



Evolving Collective Behavior

Predator Predator

.
A

Prey

Natural predators and prey

Formalization of behavior

» Complex cooperation observed in pursuit and evasion

» Motivated by biology, esp. hyenas vs. zebras (kay Holekamp, MSU)
» Largely innate, possible to see behaviors and their evolution

» Such behaviors evolve together, in coevolutionary environment

» Simultaneous competitive and cooperative coevolution



Experimental Setup

(Rawal et al. 2010)

» Toroidal grid world

» Predators, prey move with same speed in 4 directions
» No direct communication between team members
» Communication still possible through stigmergy

» Does a coevolutionary arms race result?
DEMO



Evolutionary Arms Race
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Evolutionary Arms Race
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Evolving Neural Cellular Automata

i dt

xr

xr

Neural Cellular Automata (Chua et al. 1988)
Differentiable NCA (Mordvintsev et al. 2020)




Regenerating Soft Robots through Neural Cellular Automata
Horibe, Walker, Risi; EuroGP 2021




Growing NNs with neural developmental programs

Najarro, Sudhakaran and Risi, ALIFE 2023

information aggregation

- _> Grdph convolution Growth MLP W;;éh;/fiﬁédICIIOH - :
| S —> St+n ‘ :
: Graph at developmental step ¢ Graph state S updated via local Graph growth Edge weights updated :
| I



Self-Assembling ANNs through Neural Developmental Programs

Step 0: We start with an initial graph seed

Statecell;:[7,4,2,3,..]
Statecell;:[2,1,2,3,..]

Statecell;:[5,4,9,3, .. ]



Self-Assembling ANNs through Neural Developmental Programs

Step 1: Update node states via message passing

Graph convolution

SN

St — Stin

Graph at developmental step ¢ Graph state S updated via local
information aggregation



Self-Assembling ANNs through Neural Developmental Programs

Step 2: A neural network decides which nodes will grow

£
[ - -l
-/ \_/
g
—~ =/ ~
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s . '
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\_/ Py \_/
</

Growth MLP

-




Self-Assembling ANNs through Neural Developmental Programs

Step 3: If network weighted: another NN determines edge weights

Weight ];;cdiction O
MLP >




Self-Assembling ANNs through Neural Developmental Programs

information aggregation

Seedin Informatpn Growth Synaptic strength
| aggrega’uon predlctlon
E > MLP [ O | | :
St % Stin O O
. Graph at developmental step ¢ Graph state § updated via local Graph growth Edge weights updated



'1s ydeuao ‘g 91242 yimoun




Open-ended Neuroevolution



Competitive Coevolution of Environments
and Solutions

* Paired Open-Ended Trailblazer (POET; Wang et al.)

Figure 2: An overview of POET.



ES from scratch

s sl anl e

POET-generated

A

(a) Generated agents attempting gaps

ES from scratch POET-generated ES from scratch POET-generated

i i

(b) Generated agents on rough surfaces (c) Generated agents attempting stumps







Synergies with ML



5.1 Neuroevolution Synergies with Deep Learning

'
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(A) Fundamental: Neural Architecture Search
Optimizing structure and hyperparameters
Takes advantage of exploration in EC

(B) Extended: Data and training
Loss functions, activation functions, data augmentation, initialization, learning algorithm
Takes advantage of flexibility of EC



(A) Evolutionary Neural Architecture Search

Evolution is a natural fit:
 Population-based search covers the space
« Crossover between structures discovers principles

Moreover,
* Can build on Neuroevolution work since the 1990s:
partial solutions, complexification, indirect encoding, novelty search
* Applies to continuous values; discrete choices; graph structures; combinations
* (Can evolve hyperparameters; nodes; modules; topologies; multiple tasks



E.G. NAS with CoDeepNEAT

Blueprint Module Assembled Network

-

Pop 1

AN

(Liang et al. 2016)

Evolution at three levels

 Module subpopulations optimize building blocks

* Blueprint population optimizes their combinations
 Hyperparameter evolution optimizes their instantiation

Fitness of the complete network drives evolution
* Candidates need to be evaluated through training
* EXpensive; use partial training, surrogates...



Making NAS Evaluations Practical

0. Starting Population

Hyperparameters |
v

Model Weights |

| Fitness Value |

1. Select Best Individuals

Hyperparameters

Model Weights

Fitness Value

3. Evaluate Individuals

| Hyperparameters |
v

Model Weights |

Fitness Value |

2. Generate New Individuals

Hyperparameters |

Model Weights

l

Fitness Value l

(Liang et al. 2021)

POpUIation'based training (Jaderberg et al 2017; Liang et al. 2021)
« Continual training and evolution

)

dense

global avg pool

stack 3 cell
2-3
downsample T
stack 2 o
downsample |~ c<la m
stack 1 (21 |)
conv stem

T

Scaling and regularization (such etal. 2017; Real et al. 2019)

« State-of-the art at the time in CIFAR-10, CIFAR-100, ImageNet
Specialized crossover operators (aiu and Mikkulainen 2023)

(Real et al. 2019)

0.92

MTA

0.89

Evolution

RL

20k



(B) Optimizing Other Aspects of Deep Learning Design

1.0 A

0.5 1

0.0 1

10 0 10
(Bingham and Miikkulainen, 2022)

Loss at xg=1

30

20

0.2 0.4 0.6

Predicted Label (yq)

(Gonzalez and Miikkulainen, 2020)

0.8 1.0

Multiplicative Interactions

def Setup(): (SGD)

def Learn(): # sO=label

# Init weights - -
vl = gaussian(0.0, 0.01) 2 - sl / 82 # Scale prediction Multiplicative Interactions
s2 = -1.3 sl = sO + s3 # Compute error (Flawed SGD)
v2 = s1 * vO # Gradient
0.9, def Predict(): # vO=features vl = vi + v2 # Update weights Gradient Normalization
sl = dot(v0, v1) # Prediction
Linear Model Random Weight Init
= LogLoss (Flawed SGD) Random Learning Rate g R - )
/ Best Evolved Algorithm
Baikal p
i o RelU def Setup():
BaikalCMA 2 Better Hard-coded LR s3 = 1.8e-3 # Learning rate
> 4 Arame )
o —" HParams Gradient Divided def Predict(): # vO=features
b [ ; by Input Norm - ;
> Linear Model (SGD) v2 = vO + vl # Add noise
§ Loss Clipping v3 = vO - v1 # Subtract noise
3 v4 = dot(m0, v2) # Linear
< Accumulated Weights: (o CRE) U0 L
2 Linear Model Forward |W'=Z,W, py weig
g (No SGD) def Learn(): # sO=label
[oume (Wainhte: | (Narmaliza- ) s3 = s0 - s1 # Compute error

(Real et al. 2020)

Optimizing activation functions and loss functions (singham and Miikkulainen, 2022, LIGNN-25)
* Regularization and refinement
Designing machine learning algorithms with GP
« Adapts to different task types
« Discovering new layer types

Coevolution of multiple aspects of network design

(Gonzalez and Miikkulainen, 2020)

(Real et al. 2020)




Neuroevolution Synergies with RL

(A) Combining population-based search and RL-based search

Environment
Filnesses Derences
Evaluation L).nr-m-l ces
RL-Critic (a) HalfCheetah (b) Swimmer (c) Reacher
Selection Actor Population -
-
Actor 1 b
Actor 2 >
a
Mutation Actor n RL-Actor

Inject learmed 1 beh: avior

o~ k¢ n
New populator into population

(d) Ant (¢) Hopper (f) Walker2D

Evolutionary Reinforcement Learning: (Khadka and Tumer 2018)

* A population of networks evolved to maximize rewards

« Evaluations create off-policy training data for Deep RL

* Trained networks periodically injected into the population
* ERL outperforms both EA and Deep RL alone



(B) Evolving Starting Points for RL

— meta-learning

(Finn et al. 2017)

0 ---- |earning/adaptation
VL :
VL,
B . e 5
VL, 03 s NS E
\: 04 2 O, W

N N AN =

* 0 \ I 2z i -
1* 0 / ““ﬂ&\%{“ M0

MAML-Baldwin, ES-MAML (Fernando et al. 2018; Song et al. 2019)

* Model-agnostic Meta-Learning (MAML) finds good starting points for learning

* Evolutionary methods like MAML-Baldwin and ES-MAML improve by evolving the starting points
Evolve initial weights that adapt to different tasks during the agent’s lifetime.

* E.g. in half-cheetah task, adapts to changing direction rewards within seconds



Meta-Learning through Hebbian Plasticity in Random
Networks Najarro & Risi, NeurlPS 2020

Start network with random weights instead and only evolve local
Hebbian learning rules = can weights learn to self-organize”

SYNAPSE

Pre-Syna p*i c D/

('sending") CCU

Post-synaptic
(“receiving”) cell

Awij = Nw ° (AwOin + B,,0; + CwOj —+ Dw)

© Mahapattanakul
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FC layer 1

Seen during training

FC layer 3
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Sim to real transfer.

SR

Lung et al. 2025; IROS




Neuroevolution Synergies with LLMs
(A) Neuroevolution through Large Language Models

(Mprompt | [11201111) (x*2+24% | [ themoonisbad 1 B
(P p t F)) — 11110111 sin xl\2 + 7 the moon is boring II c1::§5 Mo:zi{nn}::f;}e;;: ::
arents th is cold I e L
|| 10100111 | | 3*sinx+6.6 = MOOnB Lo i )
LM output | | 11111111 XA2 sin x + 6 the moon is zen
(Children) | | 10110111 | | cosxA2+2.1%x | | theskyhesamoon s o
( -cl:s; ;o;el-(:n.:m-du-le-):- B © D
(Meyerson et al. 2024) TN T |
e em—mmm———— ®
{ class Medel (nn.Module): @
Better evolution through LLMs? -
* Evolution through large models (ELM) e e T !
* Language model crossover (LMX)
* Level generation for Mario (MarioGPT) Select in-context and
prompt-tuning examples
. . . B E S: o
E.g. Evolutionary prompting for NAS (EvoPrompting) TR e
- Existing architectures as prompts; generate new - G
* Tune the prompts based on performance %8 -a00  $8°-1200

(Chen et al. 2023)



Neuroevolution of Large Language Models

Model Layers

(Akiba et al. 2024)

Better LLMs through evolution?

Model merging: combine multiple fine-tuned LLMs to one
 E.g. Japanese LLM with Math

Evolving prompts: Promptbreeder

* Evolving mutation prompts to improve task prompts
Evolving multi-LLM interactions

* E.g. roles for collaborative problem solving

LLM
o
eI LLM
T T o
DTS

) @ Requiremen t documen t 1/5
; y Define

Product Manager

D
4

- . o0
Requirement Analysis i R System design 2 _
ey By Z 2/5
Architect s Design
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% Plan&Code
%
%
%
%, -
% 4/5
0’9;'» ' Test
5
OA‘ —
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(Hong et al. 2023)



Insights into biology



left objects

retina

Evolution of modularity e
_Fiffjee
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Clune, J., Mouret, J. B., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society b: Biological sciences, 280(1755), 20122863



Example: Evolution of Intelligent Coordinated
Behavior

Stealing a kill from lions

* Succeeds in an otherwise impossible task
(sometimes)

* More sophisticated than other hyena

behaviors

* Highly rewarding compared to normal
hunting

* Largely genetically determined
A breakthrough in evolution of intelligence?

A collaboration with Kay Holekamp’s lab ( U)
Studying hyenas in Masai Mara since 1982

(Rajagopalan et al. 2021)




Simulation Setup

-
Hyena
- -
Hyena
Ivena .
. Hyena
Hyvena " ! 'v
r

"

Lion at a kill, with an interaction circle around it
Ten hyenas chosen and placed randomly in the field
If four or more hyenas enter the circle simultaneously, they get the Kkill

* Otherwise they die
Does mobbing behavior evolve?
* What are the stepping stones for it?



Initial Behaviors

Behaviors

100
B Mobber

p Risk-taker

80 B Risk-evader

60

40

20

0 1

Risk evasion is common

Never reach the circle;
Medium fithess

Risk taking is common

Charge the circle;
Frequent low fitness
Occasional high fitness
by accident

Early Behaviors

Behaviors

100
B Mobber

p Risk-taker

80 Bm Risk-evader

60

40

20

0 1

Risk taking grows

* Aslong as it is successful often
enough

Risk evasion also persists

Evasion at the circle starts to

emerge

Is mostly detrimental, but an

important stepping stone

Later Behaviors

Behaviors
100

Bl Mobber
p Risk-taker

80 m Risk-evader

60

40

20

o

Mobbing emerges

* Not just coincidence of risk
takers

* Hyenas wait until there’s
enough of them

Risk-evaders evolve into

latecomers

Simple risk-taking and risk-

evasion still exist



These Behaviors Persist in Prolonged Evolution
Il

0 100 200 300 400 500 600 700 800 900 1000

Awerage score
(%]

Number of generations

Risk taking and risk evasion never go away completely
* They serve a role in maintaining the mobbing behavior
* If mobbing starts to get lost, it can be reintroduced



Insight into Real-life Behaviors

These behaviors are observed in real-life hyenas as well

A computational explanation of why they are there:
« Stepping stones in discovery
« Safeguards in maintaining



Future Challenge: Evolution of Language

e

e Satd

Signaling is possible to evolve in ecological simulations
Structured language is much harder

Perhaps language evolved not from signaling, but cognition

« Complex social structure, with modifiable roles

* Language structure can reuse the same conceptual structures
Enough compute, complex simulations to study now?



Conclusion

Model Layers
Sd urebisiy
S4Q ui ebisy

Al: @ INH X A2 Al: @2 Al:@

0 =20 | | =8 28 =8
Al is progressing from imitation to creativity; from models to agents
Outcomes

Neuroevolution is a powerful approach to discovering behavior
« Control, strategy, collective behavior, decision-making

Neuroevolution can provide a boost to ML

* Deep learning designs; RL exploration; LLM optimization
« Automatic design of learning machines

Neuroevolution can provide insight into biological evolution

Predict

« Evolutionary origins of circuits, behavior, intelligence
« Evolution of language as a current challenge Context Prescribe Actions
« A possible path to more capable artificial agents




The Neuroevolution Book!

NEUROEVOLUTION

\H

Sebastian Risi, Yujin Tang, David Ha, and Risto Miikkulainen ° M |T PreSS 2026

A comprehensive overview

Software platform: Demos, exercises
Open access

https://neuroevolutionbook.com




